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Constant-volume quantum molecular dynamics �QMD� simulations of uranium �U� have been carried out
over a range of pressures and temperatures that span the experimentally observed solid orthorhombic �-U,
body-centered-cubic �bcc�, and liquid phases, using an ab initio plane-wave pseudopotential method within the
generalized gradient approximation of density-functional theory. A robust U pseudopotential has been con-
structed for these simulations that treats the 14 valence and outer-core electrons per atom necessary to calculate
accurate structural and thermodynamic properties up to 100 GPa. Its validity has been checked by comparing
low-temperature results with experimental data and all-electron full-potential linear-muffin-tin-orbital calcula-
tions of several different uranium solid structures. Calculated QMD energies and pressures for the equation of
state of uranium in the solid and liquid phases are given, along with results for the Grüneisen parameter and the
specific heat. We also present results for the radial distribution function, bond-angle distribution function,
electronic density of states, and liquid diffusion coefficient, as well as evidence for short-range order in the
liquid.
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I. INTRODUCTION

Quantum molecular dynamics �QMD� simulation meth-
ods based upon density-functional theory1,2 �DFT� and the
use of plane-wave ab initio pseudopotentials3–6 have been
very successful in simulating the high-pressure and high-
temperature properties of low-Z materials �Z�20� and,
more recently in several instances, higher-Z materials
�21�Z�82� as well. In the case of metals, these include
sp-bonded simple metals such as sodium,7 aluminum,8 tin,9

and lead10 and d-bonded transition metals such as iron,11–13

molybdenum,14,15 copper,16 and tantalum.17 In these materi-
als one has mostly close-packed high-symmetry structures in
the solid: face-centered cubic �fcc�, body-centered cubic
�bcc�, and hexagonal close packed �hcp�. To the best of our
knowledge, there are no published reports of QMD studies
for more complex metals in which f electrons participate in
the bonding such as the early actinide elements, thorium
through plutonium �90�Z�94�. These metals can be treated
by DFT methods but are more challenging because they have
narrow-band 5f electrons with bandwidths of 1–3 eV, in
comparison to transition metals with d bandwidths of 3–10
eV and simple metals with even larger sp bandwidths. These
5f electrons have a dominant influence on the electronic
structure, imparting highly directional bonding and produc-
ing polymorphism and low-symmetry crystal structures not
seen in other metals in the Periodic Table.18–20 In addition,
any QMD simulation on an actinide metal is inherently more
computationally demanding because of the number of elec-
trons per atom that must be treated for accurate results:
12–16 �including the outer-core 5s and 5p states�, as com-
pared to 1–4 for simple metals and 3–9 for transition metals.
Since DFT-based QMD has been applied successfully in the
latter cases, it is of great interest to know how this approach
will fare when applied to the actinides. Uranium �U� is a
good starting point for such investigations. It has an interest-
ing high-pressure phase diagram as well as many unusual
properties near ambient pressure. Moreover, because U is

both nontoxic and naturally occurring, there exist a great
deal of experimental data with which simulations can be
compared.

The narrow-band itinerant 5f electrons near the Fermi
level in uranium give rise to several interesting and unique
physical properties. These bands lead to a symmetry-
breaking mechanism similar to a Peierls or a Jahn-Teller dis-
tortion that lowers the total energy and results in an open,
low-symmetry ground-state structure, denoted as �-U, that is
face-centered orthorhombic with two atoms per primitive
cell. Below the temperature of 43 K, uranium is unique
among the elements in having a charge-density-wave �CDW�
state21–23 that is not induced by a spin-density wave, as is the
case in chromium.24,25 Theoretically, the CDW in uranium
has been attributed to the opening of gaps,26 a Peierls-type
transition, at the Fermi level with its lattice distortion arising
from a strong nesting of the fairly narrow 5f bands. Recent
theoretical calculations have predicted27 that the narrow 5f
electrons of solid uranium, which is nonmagnetic in the bulk,
give rise to a surface magnetic moment on the �001� surface.
Rhodium is the only elemental solid where a surface mag-
netic moment has been observed experimentally in a solid
that is nonmagnetic in the bulk.28,29 The electron-phonon
coupling in uranium is believed to be the source of additional
unusual properties such as an intrinsically localized vibra-
tional mode that was recently observed30 above 450 K and its
rich superconducting features.31 Reviews of the physical
properties of uranium were given by Fisher32 and Lander
et al.22

Regarding high-pressure properties, the phase diagram
and equation of state �EOS� of uranium have been studied in
piston-cylinder33 and diamond-anvil-cell34–37 �DAC� experi-
ments to 100 GPa. The �-U structure is observed to remain
the stable phase at room temperature over this entire pressure
range,36 while above 1050 K there is a prominent high-
temperature bcc ��� phase38 that has been observed in the
DAC up to 60 GPa.37 Below 4 GPa, there is also an inter-
mediate tetragonal ��� phase with a complex and still uncer-
tain 30-atom unit-cell structure that exists over a small tem-
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perature range �940–1050 K at ambient pressure�.39–41 An
interesting feature of the bcc phase is that it is mechanically
unstable at low temperature �with a negative C� shear modu-
lus� over the whole 100 GPa pressure range, as DFT calcu-
lations have shown.20 Thus the bcc � phase is stabilized only
at high temperature by thermal contributions, e.g., large an-
harmonic phonon effects and/or large electron-thermal ef-
fects. This situation is analogous to that in the group-IVB
transition metals titanium, zirconium, and hafnium, which all
have high-temperature bcc phases that are mechanically un-
stable at low temperature. Also, as in the group-IVB metals,
uranium melts out of the bcc structure up to high pressures.
The melt curve of U has been measured in laser-heated DAC
experiments up to 100 GPa.35,37

Regarding corresponding high-pressure theory on ura-
nium, there have been a number of DFT calculations of zero-
temperature properties, as we shall discuss below. There has
been comparatively little work, however, on the high-
temperature phase diagram and EOS. One result of note was
an early calculation of the melt curve35 by using quantum-
based effective pair potentials derived from model general-
ized pseudopotential theory42 �MGPT�. While this treatment
did lead to a quite reasonable melt curve, the potentials
themselves suffer from two main shortcomings. First, they
neglect nonisotropic, angular forces associated with the
5f-electron directional bonding. As a consequence, neither
the �-U ground state nor the mechanical instability of the
bcc phase at low temperature are described. Second, no ac-
count of electron-thermal effects has been taken in either the
potentials or the melting calculation. Physically, one expects
the high density of electronic states at the Fermi level arising
from the narrow-band 5f electrons to produce a strong cou-
pling between the ion- and electron-thermal degrees of free-
dom for temperatures as low as melt, leading to temperature-
dependent forces on the ions and an impact on the melt
curve. Using DFT-based QMD, we believe these shortcom-
ings can be overcome. This approach treats the electrons and
ions on a fundamental and equal footing, so both the direc-
tional 5f-bonding and the temperature-dependent forces are
rigorously treated. In our QMD simulations, the electrons
and the ions are held in thermodynamic equilibrium, and the
forces felt by the ions are calculated self-consistently on the
fly by computing the eigenstates of the electronic Hamil-
tonian for each instantaneous position of the ions.

At the same time, a direct and accurate QMD simulation
of the melt curve remains a formidable challenge for any
high-Z metal and to our knowledge none has yet been re-
ported. In this regard, the melt-curve results published to
date for higher-Z simple and transition metals9–12,14–17 have
all been indirectly determined, making extensive use of
simple reference potentials and/or other approximate devices
to obtain the result. In the present initial QMD study on
uranium, our focus is on the high-temperature EOS in the
relevant solid and liquid phases obtained using direct QMD
simulations rather than on any such determination of the melt
curve or other phase boundaries. Regarding such applica-
tions, we have also recently developed complementary
multi-ion MGPT potentials for U, including three- and four-
ion potentials but based on zero-temperature electrons, and
we are working to develop the capability to obtain full

temperature-dependent MGPT potentials using QMD
simulations.43 This latter work will be reported separately at
a later time.

The feasibility of the present QMD simulations has been
made possible by the advances in both DFT methodology
and computational capabilities that have occurred in the past
two decades. These include the development of robust all-
electron and pseudopotential methods and the development
of a parameter-free generalized gradient approximation
�GGA� �Ref. 44� for the exchange and correlation terms in
DFT. These have resulted in a number of first-principles cal-
culations of the ground-state properties of the light actinides
that are able to reproduce the correct observed structures and
obtain equilibrium volumes45–47 and elastic constants48,49 in
close agreement with experiment. These calculations have
made use of accurate but computationally expensive all-
electron techniques such as full-potential linear muffin-tin
orbital �FP-LMTO�, full-potential linearized augmented
plane wave �FLAPW�, and linear combinations of Gaussian-
type orbital fitting function �LCGTO-FF�. These methods
have been mainly limited to the study of structures of small
size or high symmetry because of their high computational
cost. In addition, the difficulties within these approaches of
accurately calculating forces and stresses have limited their
usefulness for QMD. Recently, plane-wave pseudopotential
calculations50 using GGA but without the relativistic spin-
orbit coupling produced structural properties of complex
low-symmetry compounds containing lanthanides and ac-
tinides, including uranium, with an accuracy comparable to
that seen using DFT in materials containing lighter elements
of the Periodic Table. Additional plane-wave pseudopotential
DFT calculations51,52 of bulk uranium using GGA obtained
the fully relaxed �-U with structural parameters that differed
from experiment by only a few percent and that compare
favorably with previous all-electron calculations, putting ura-
nium within reach of QMD.

II. URANIUM PSEUDOPOTENTIAL
AND LOW-TEMPERATURE PROPERTIES

To perform the QMD simulations discussed in this paper,
we have constructed a plane-wave-based pseudopotential for
uranium within DFT and the GGA for exchange and corre-
lation of Perdew et al.44 by solving for the all-electron ura-
nium atom U2.25+ in the reference state 6s26p66d15f2.75. The
energies of the core electrons were obtained by solving the
scalar relativistic equations, while the valence electrons were
treated nonrelativistically. The pseudopotential was modeled
in the nonlocal norm-conserving Troullier-Martins form,53

with a total of 14 valence electrons generated using a plane-
wave cutoff of 100 Ry. There is one projector for each com-
ponent of angular momentum. The cut-off radii for the
pseudized orbitals are 0.95, 1.06, 1.32, and 0.95 Å for the
6s, 6p, 6d, and 5f valence orbitals, respectively. The d com-
ponent was chosen to be local. To improve the efficiency of
our simulations, we transformed the pseudopotential into the
Kleinman-Bylander form.54

The accuracy and transferability of our pseudopotential
were tested by performing DFT calculations of the zero-
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temperature total energies of several different solid structures
including bcc, fcc, hcp, body-centered tetragonal �bct�, and
�-U. As noted above, �-U is the stable phase of uranium at
low temperatures up to pressures of 100 GPa, with a face-
centered-orthorhombic �Cmcm� structure that can be de-
scribed with two atoms per unit cell with the basis vectors

B� 1 = ybŷ +
1

4
cẑ ,

B� 2 = − ybŷ −
1

4
cẑ ,

where b and c are orthorhombic lattice parameters and y is
an internal parameter. The irreducible Brillouin zone was
sampled using 44, 110, 150, 99, and 168 Monkhorst-Pack55

special k points for the bcc, fcc, hcp, bct, and the �-U struc-
tures, respectively. To improve convergence of the k-point
integration, a Gaussian smearing of 0.02 Ry was used.
Shown in Fig. 1 are the relative total energies for each of
these structures computed at several different atomic vol-
umes. At each volume the c /a ratio in the bct structure was
relaxed. The hcp structure was taken to be “ideal” with a
fixed c /a ratio of �8 /3. The cell parameters b /a and c /a and
the internal parameter y of the �-U were fully relaxed at each
volume. We correctly obtained �-U as the lowest-energy
structure with an equilibrium atomic volume of 20.72 Å3, in
close agreement with the experimental value56 of 20.770 Å3.
Our result differs from previous calculations using different
pseudopotentials constructed within the GGA, which ob-
tained equilibrium volumes of 19.92 Å3 with spin-orbit cou-
pling included51 and 20.15 Å3 without spin-orbit coupling.52

A Murnaghan fit57 to our total energy as a function of volume
for �-U yielded a bulk modulus of 133.5 GPa, which is
larger than the reported experimental value56 of 104�2� GPa
but agrees closely with the DAC result of Yoo et al.37 of
135.5 GPa. Our pseudopotential results are also in close
agreement with all-electron GGA FP-LMTO calculations48

on a fully relaxed �-U structure, which gave an equilibrium
volume of 20.67 Å3 and a bulk modulus of 133.0 GPa.
These latter calculations were fully relativistic and included
spin-orbit coupling in a first-order variational treatment.

Table I lists our calculated ground-state properties of �-U
compared with the FP-LMTO calculations and experimental
data. Our calculated lattice parameters differ by at most 2%
in comparison with experimental values and by about 1% in
comparison with the FP-LMTO results. Because B and B�
are highly correlated, such that small errors in pressure-
volume data lead to simultaneous changes in both quantities,
we used the same fitting code to calculate the Murnaghan
equation of state for our pseudopotential data that was used
in fitting the FP-LMTO calculations48 and the DAC results of
Yoo et al.37

Up to 100 GPa, uranium has not been found to exist in the
fcc, hcp, or bct structures, whose energies are plotted in Fig.
1, although FP-LMTO calculations20 predict that these struc-
tures will have lower energies than those of �-U at large
enough densities. As a further check of both the validity of
our pseudopotential in the 100 GPa pressure range and the
impact of neglecting spin-orbit coupling, we have compared
our calculated structural energies with the FP-LMTO
results.20,48 Figure 2 shows that our pseudopotential is able to
reproduce the correct energetic ordering of all five structures

TABLE I. Ground-state properties of �-U calculated from an
all-electron FP-LTMO approach �Ref. 48� and from the present
plane-wave pseudopotential approach as compared with experi-
ment. The equilibrium volume and the lattice constants a, b, and c
are in angstroms, while the bulk modulus is in gigapascals. The
experimental results �Ref. 56� were measured at room temperature.

FP-LMTO Pseudopotential Expt.

Volume 20.67 20.72 20.770

a 2.845 2.86 2.8553

b 5.816 5.77 5.8702

c 4.996 5.01 4.9568

y 0.1025 0.104 0.102

B 133.0 133.5 104�2�, 135.5a

B� 5.4 5.0 6.2, 3.8a

aReference 37.
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FIG. 1. Energies of different hypothetical phases of uranium in
mRy/atom as a function of atomic volume �Å3� relative to the ob-
served �-U phase at its equilibrium volume. Included are the rela-
tive energies of the bct, bcc, hcp, and fcc structures.
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FIG. 2. Energy differences for uranium in the �-U, bct, hcp, and
fcc structures relative to bcc, in mRy/atom as a function of volume
per atom �Å3�. The solid lines are the energy differences computed
using GGA FP-LMTO with spin-orbit coupling �Refs. 20 and 48�.
The dashed lines are our computed energy differences using a GGA
pseudopotential without spin-orbit coupling.
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considered in comparison with FP-LMTO. This demonstrates
that our plane-wave pseudopotential method is able to re-
solve the small energy differences between the high- and
low-symmetry phases of uranium, even without including
spin-orbit coupling. This is important for QMD simulations,
where the local atomic environment can vary with time
throughout the simulation cell.

Another useful validation test of our pseudopotential is to
calculate structural energies along the continuous Bain path58

linking bcc and fcc at constant volume. Along this path, the
bcc structure has one of its cubic directions labeled c rather
than a to create a bct structure with variable c /a. When c /a
equals 1 the structure is bcc, and when it equals �2 the struc-
ture is fcc. We performed Bain-path pseudopotential calcula-
tions at an atomic volume of 20.75 Å3 with c /a ranging
between 0.75 and 1.8. As shown in Fig. 3, our results repro-
duce the qualitative behavior and for c /a between 0.75 and
1.08 the quantitative behavior, which is seen in correspond-
ing FP-LMTO calculations,20 including a minimum in the
total energy at the same c /a ratio near 0.82. The bcc struc-
ture is found to be mechanically unstable to tetragonal dis-
tortions in both calculations, with a negative curvature in the
Bain path at c /a=1 and a negative C� elastic constant di-
rectly calculated. Thus in our QMD simulations, we indeed
expect bcc to be mechanically unstable at low temperature.

III. QMD RESULTS AND DISCUSSION

In QMD the ions move according to Newton’s classical
equations of motion in which the forces acting on the ions
are computed “on the fly” by solving the DFT quantum-
mechanical equations for the electrons at each discrete time
step. Newton’s time-dependent equation was discretized us-
ing a Verlet leap-frog algorithm.59,60 We have used Born-
Oppenheimer QMD in which the low-lying single-particle
electronic eigenstates are computed by solving the self-
consistent DFT Kohn-Sham equations2 within the framework

of Mermin’s finite temperature density-functional theory.61

To accomplish this, we used a preconditioned conjugate gra-
dient method3,62–65 to fully relax the electronic wave func-
tions at each time step. An efficient fast Fourier transform
algorithm was used for the conversion of the wave functions
between real and reciprocal spaces. The electronic eigen-
states were thermally occupied using the Fermi-Dirac distri-
bution function at a temperature Telectron equivalent to the ion
temperature. The use of a pseudopotential along with a
plane-wave basis allowed us to accurately calculate the
forces acting on the ions. We have performed all of our
QMD simulations with a time step of 1.2 fs in a NVT en-
semble with a constant number of particles in which the vol-
ume is held constant within a fixed-shape simulation cell and
the temperature is controlled using a Nose-Hoover
thermostat.66 To test the convergence of our electronic
eigenstates with this time step, we performed a single
constant-energy, NVE-ensemble QMD simulation for 1.3 ps.
The calculated energy fluctuations were less than 1 mRy.

We have obtained full QMD results at nine chosen
temperature-volume points using a cubic simulation cell con-
taining 54 uranium atoms with periodic boundary conditions
and a single k point for Brillouin-zone averaging in recipro-
cal space. To test size effects and the convergence of the
54-atom calculations, at one temperature-volume point we
performed QMD simulations using 32, 54, and 128 atoms.
Our 54-and 128-atom simulations yielded energies, pres-
sures, and structural properties, such as the radial distribution
function, which were the same to within statistical fluctua-
tions. In contrast we saw statistically significant deviations in
these same quantities when comparing simulations with 32
and 54 atoms. The chosen temperatures and corresponding
calculated pressures for the 54-atom simulations are shown
as circles and diamonds superimposed onto the experimental
phase diagram of uranium in Fig. 4. The temperatures and
volumes of the QMD simulations were chosen to span the
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FIG. 3. The calculated constant-volume Bain path for uranium
at an atomic volume of 20.75 Å3, which is close to the experimen-
tal equilibrium atomic volume at ambient conditions 20.770 Å3

�Ref. 56�. The solid line was computed using FP-LMTO �Ref. 20�,
while the dashed line was calculated using our present pseudopo-
tential. Here c /a=1 and c /a=�2 correspond to the bcc and fcc
structures, respectively.
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FIG. 4. Phase diagram of uranium up to 100 GPa determined
from in situ diamond-anvil-cell x-ray/laser-heating experiments
�Refs. 35 and 37� together with the present calculated EOS points.
The circles �atomic volume: 20.45 Å3�, and diamonds �atomic vol-
ume: 17.53 Å3� are positioned at the chosen temperatures and cal-
culated pressures obtained using nvt-ensemble quantum molecular
dynamics simulations. The statistical error bars in the pressures are
smaller than the size of the symbols.
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observed solid �-orthorhombic and �-bcc phases and the liq-
uid phase. Our small cubic simulation cell is readily com-
mensurate with the high-temperature bcc and liquid phases,
and we have observed these phases free of any external
strains. This is not the case, however, for the low-
temperature orthorhombic �-U phase. As discussed below,
we believe that we never actually achieved a relaxed �-U
structure in our QMD simulations nor the expected �-U to
bcc solid-solid phase transition. More likely, our low-
temperature structure was bct or some simple distortion of
bct, consistent with Figs. 1–3, and this structure transformed
continuously to bcc at high temperature. To confirm that the
results in Fig. 1 are indeed relevant to our 54-atom QMD
simulations, we repeated them using a smaller 4�4�4
�-centered mesh of k points. For the bcc phase, this k-point
mesh corresponds to a supercell containing 64 atoms with
only the � k point, similar to our QMD simulations with 54
atoms. The energetic ordering of the fcc, hcp, bcc and bct
phases were the same as those shown in Fig. 1. In addition
the �-U phase was the lowest-energy structure for atomic
volumes below 20.5 Å3 and was between the bct and the bcc
phases at expanded volumes, those greater than 20.5 Å3.
Furthermore, we obtained the same energetic ordering of the
different phases with calculations using primitive cells con-
taining 64 atoms and a single � k point. Finally, at our two
highest temperature points, there was clear evidence of melt-
ing from bcc to liquid in our QMD simulations, as also dis-
cussed below.

The starting ionic configuration for our lowest-
temperature simulation at 330 K was the bcc structure. Be-
cause bcc is mechanically unstable at these conditions, this
structure immediately relaxed to a local energy minimum,
which was undetermined but presumably bct-like. This meta-
stable configuration was then thermalized until the energy
stabilized, which required about 0.5 ps, before statistics were
accumulated. The final configuration from this simulation
was used as the starting configuration at 490 K, which was
again thermalized for 0.5 ps before statistics were accumu-
lated. This procedure was repeated for each successively
higher-temperature simulation performed at the atomic vol-
ume of 20.45 Å3. In addition, to ensure that a good equilib-
rium was established for the two liquid states, we repeated
the simulations for these states with different starting ionic
configurations. These states were first brought to approxi-
mately twice their respective final temperatures, 4000 and
6000 K, and then were thermalized at the higher tempera-
tures for 0.5 ps before being slowly cooled down to 2150 and
2990 K and equilibrated to accumulate statistics. These
liquid-state results were independent, to within statistics, of
the starting ionic configurations. The seven QMD data points
shown as circles in Fig. 4 were simulated for times ranging
from 1 ps �solid states� to 3–3.5 ps �liquid states�. The two
points shown as diamonds in Fig. 4 had a constant atomic
volume of 17.53 Å3 and were simulated for 3.7 ps, after
starting each simulation in a bcc structure that was first ther-
malized for 0.5 ps.

In all of these QMD simulations, we expanded our elec-
tronic wave functions in a plane-wave basis with either an 80
Ry cutoff �solid states at 20.45 Å3� or a 100 Ry cutoff �re-
maining states�. We found that these cutoffs were sufficient

to reproduce the calculated pressures to within our statistical
error bars that were obtained using 100 or 120 Ry cutoffs,
respectively. Table II lists the nine pressures and total ener-
gies that were computed on the equation of state of uranium.

An extremely useful quantity in characterizing the theo-
retical high-pressure equation of state of a material is the
Grüneisen parameter �G and its volume and temperature de-
pendence. The Grüneisen parameter is defined as

�G = V� �P

�E
�

V

, �1�

which via the chain rule can be written in terms of the tem-
perature derivatives of the pressure, �P /�T, and the total
energy, �E /�T, at constant volume. From the QMD data pre-
sented in Fig. 4 and Table II, it can be seen that P and E vary
smoothly and almost linearly with temperature at constant
volume, even across phase boundaries, indicating a near con-
stant value of �G at those conditions. Assuming an exact
linear temperature dependence at the atomic volume of
20.45 Å3, we calculate �G to be 1.7 for uranium. For com-
parison, the experimental value of �G at ambient conditions
in the �-U phase is 2.16, a value corresponding to an atomic
volume of 20.77 Å3 and obtained from the thermodynamic
relation

�G =
V�BS

CP
�2�

through measured values of the thermal expansion coeffi-
cient �, adiabatic bulk modulus BS, and constant-pressure
specific heat CP.67 Similarly in the liquid at T=1810 K and
P=0.12 GPa, the experimental value68 determined for �G is
2.29, corresponding to an atomic volume of 25.06 Å3. If one
assumes a local linear variation of �G with volume,

�G�V� = �G
0 V/V0, �3�

then this latter value reduces to 1.87 at an atomic volume of
20.45 Å3, which is indeed close to our calculated result of
1.7. In this regard, Yoo et al.35 found that the melting curve
of uranium below 50 GPa obeyed a Lindemann scaling law

TABLE II. Constant-temperature, constant-volume quantum
molecular dynamics results for the equation of state of uranium
computed at a range of chosen temperatures T and atomic volumes
V. Included are the calculated pressures P and total energies E.

T
�K�

V
�Å3 /atom�

P
�GPa�

E
�Ry/atom�

330 20.45 4.8 −102.573�1�
490 20.45 6.1 −102.570�1�
800 20.45 7.2 −102.562�1�

1200 20.45 8.8 −102.551�2�
1680 20.45 11.0 −102.542�2�
2150 20.45 13.0 −102.530�2�
2990 20.45 18.1 −102.554�2�
1400 17.53 36.0 −102.541�1�
2000 17.53 42.0 −102.533�1�
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based on an ion-Grüneisen parameter with a linear volume
dependence as in Eq. �3�.

As noted above, the total energies from Table II at the
atomic volume of 20.45 Å3 depend nearly linearly on the
temperature. From the slope of this line, we calculated the
specific heat at constant volume,

CV = � �E

�T
�

V

, �4�

to be 130 J /kg K. Using the experimental specific heats ra-
tio CP /CV=1.5 determined at T=1810 K in the liquid,68 we
estimate CP to be 195 J /kg K in liquid uranium. This com-
pares favorably with the experimental value for CP of
210 J /kg K in the liquid state obtained at the atomic volume
of 25.06 Å3 from isobaric expansion measurements.69

In addition to thermodynamic properties, we have also
obtained a large amount of atomic and electronic structural
information as well as liquid transport properties from our
QMD simulations. We have calculated both radial and angu-
lar distribution functions at each of our nine temperature-
volume points. In Fig. 5 we show the calculated radial dis-
tribution function g�r� for uranium at the atomic volume of
20.45 Å3 and the four temperatures 330, 1680, 2150, and
2990 K. Corresponding results for the bond-angle distribu-
tion function g3��� are shown in Fig. 6. Here g3��� has been
calculated with a cut-off radius of 3.9 Å, which corresponds
to the first minimum in g�r�. At the constant volume of
20.45 Å3 /atom, both g�r� and g3��� changed smoothly with
increasing temperature between 330 and 2990 K. In the
solid, we did not see changes in either function with increas-
ing temperature that would indicate a solid-solid structural
phase transition, such as that expected in uranium from the
orthorhombic �-U phase to the bcc � phase. At 1680 K, the
radial and bond-angle distribution functions are very charac-
teristic of the high-temperature bcc solid.70 In contrast at 330
K, the distribution functions, while similar, are too broad and
with additional shoulders that are those of a low-temperature
bcc or another crystalline structure. We also saw a small
asymmetry in the diagonal components of the pressure at the
lowest temperatures which diminished with increasing tem-

perature. These observations are consistent with a scenario of
a distorted bct-like structure at low temperature continuously
evolving into bcc at high temperature. Finally, at our two
highest temperatures, 2150 and 2990 K, clear evidence of
melting and transition to a liquid state, l-U, is seen. In g�r�
this evidence comes from the first minimum near 3.9 Å,
which is deep and near zero for the solid but is considerably
higher for the liquid. In g3���, the small signature peak near
180°, which is characteristic of a cubic or a tetragonal solid,
is no longer present in the 2150- and 2990-K simulations.

At the same time, it is interesting to note that the liquid
uranium �l-U� states in our QMD results do show character-
istics of short-range order �SRO�. This can be seen in terms
of the bond-angle distribution function g3��� displayed in
Fig. 6. The first peak in g3���, at about 60°, corresponds to
equilateral triangles, and the second peak, at around 109°,
corresponds to the angle between tetrahedral edges that share
a common face. Thus, the local structure with SRO in l-U is
a collection of tetrahedra with a common vertex, as can be
seen in the QMD snapshot presented in Fig. 7. The evolution
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FIG. 5. Radial distribution function g�r� �the relative probability
of finding an atom at a distance r from another atom� for uranium
calculated using QMD at an atomic volume of 20.45 Å3 and the
temperatures of 330 K �solid line�, 1680 K �dotted-dashed line�,
2150 K �dashed line�, and 2990 K �thin solid line with shaded area�.
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FIG. 6. Bond-angle distribution function g3��� �the number of
bond angles an atom makes with its neighbors located within a
cut-off radius of 3.9 Å3� for uranium from QMD simulations at an
atomic volume of 20.45 Å3 and temperatures of 330 K �solid line�,
1680 K �dotted-dashed line�, 2150 K �dashed line�, and 2990 K
�thin solid line with shaded area�.

FIG. 7. �Color online� Snapshot of the l-U structure at T
=2990 K showing a network of tetrahedra with a common vertex,
which is a characteristic of SRO in the liquid.
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of the SRO in the two l-U states we have simulated is also
seen through the temperature dependence of g3���. The am-
plitudes of the two peaks in g3��� decrease with increasing
temperature, indicating a reduction in SRO as the tempera-
ture increases. A more subtle feature is the shoulder around
150° that appears in g3��� at 2150 K but is absent at 2990 K.
The appearance of the shoulder suggests decreased stability
and that one is near the freezing point for the liquid or even
possibly in an undercooled metastable state. From Fig. 4 one
sees that at 2150 K one is only a few hundred degrees above
the experimental melt curve.

Additional confirmation of the liquid nature of our two
highest-temperature l-U states can be seen from the calcu-
lated mean-square displacement �MSD� for the ions at long
time, as shown in Fig. 8. A positive slope to the asymptote of
the MSD curve corresponds to diffusion of the ions away
from their initial positions. From the long-time MSD slope,
one can calculate the liquid diffusion coefficient D through
the Einstein relation

6D = lim
t→�

d

dt
��ri�t� − ri�0��2� . �5�

As expected, a higher diffusion coefficient
�1.71�10−4 cm2 s−1� is calculated for l-U at T=2990 K
than that at T=2150 K, where D=0.92�10−4 cm2 s−1.

Finally, the calculated total electronic densities of states
from our l-U QMD simulations are shown in Fig. 9. The
corresponding results for the solid �-U and bcc structures at
T=0 are also displayed for comparison. Overall, the density
of states �DOS� does not show any dramatic changes with
increasing temperature or phase change from solid phases to
the liquid states except that the temperature smooths out the
sharp features in the DOS and slightly broadens the band-
widths in the solid phases, with the strongest effects on the
band of localized 6p states around 18 eV below the Fermi
level.

IV. CONCLUSIONS

To summarize, we have carried out 54-atom constant-
volume, constant-temperature QMD simulations of uranium

at two different volumes and a range of temperatures cover-
ing the observed �-U, bcc, and liquid phases up to 2000 K
and 42 GPa. We believe that the present plane-wave-based
pseudopotential approach within GGA of DFT gives an ac-
curate description of uranium, and the specific pseudopoten-
tial we have developed for this work has been validated up to
100 GPa. We have presented U simulation results for the
equation of state, the Grüneisen parameter and specific heat,
the radial and bond-angle distribution functions, the liquid
diffusion constant, and the electronic density of states. From
the bond-angle distribution for the liquid uranium states, we
have found that the local atomic structure displays short-
range order. Among other things, these results should aid in
the development of accurate multi-ion MGPT interatomic
potentials43 that are valid at high temperatures and pressures
and can be used for in-depth studies of additional structural,
thermodynamic, defect, and mechanical properties of ura-
nium.

The primary limitation in our QMD simulations has
been the necessary use of a small, fixed-shape �cubic�
simulation cell. In the low- and intermediate-temperature
solid, this places external strains upon the system when the
orthorhombic �-U structure is the energetically preferred
phase, although this is not the case at high temperature,
when uranium is in the bcc or liquid phases. The future de-
velopment of constant-pressure, variable-cell QMD simula-
tions may rectify the former difficulty, but this remains very
challenging. In principle, such simulations could accommo-
date the �-U phase and its large thermal anisotropy40 and
permit the direct observation of the �-U to bcc phase
transition.
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FIG. 8. MSD for the l-U states versus time as calculated from
the present QMD simulations at an atomic volume of 20.45 Å3 and
temperatures of 2150 K �solid curve� and 2990 K �dashed curve�.
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FIG. 9. Total electronic DOS for uranium calculated from the
present QMD simulations at an atomic volume of 20.45 Å3 and
temperatures of 2150 K �solid line� and 2990 K �dashed line�. The
DOS for solid �-U �dotted line� and bcc �dotted-dashed� structures
at T=0 are shown for comparison. The abrupt drop in the QMD
DOS at 2 eV is an artifact of using a limited number of unoccupied
states. There are three main features in the each DOS: the low-lying
6s states around −42 eV, the 6p states around −18 eV,
and the higher-energy 7s, 6d, and 5f valence states near the Fermi
level.

QUANTUM MOLECULAR DYNAMICS SIMULATIONS OF… PHYSICAL REVIEW B 78, 024116 �2008�

024116-7



ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory in part under Contract No. W-7405-Eng-48

and in part under Contract No. DE-AC52-07NA27344.
Our calculations were performed on the ASC Q machine
at Los Alamos National Laboratory and on the ASC
White and Atlas machines at Lawrence Livermore National
Laboratory.

1 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
2 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
3 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.

Joannopoulos, Rev. Mod. Phys. 64, 1045 �1992�.
4 D. Marx and J. Hütter, in Modern Methods and Algorithms of

Quantum Chemistry, Forschungzentrum: Jülich NIC Series Vol.
1, edited by J. Grotendorst �NIC, FZ Julich, Germany, 2000�, pp.
301–449.

5 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 �1996�.
6 M. Parrinello, Solid State Commun. 102, 107 �1997�.
7 J. Y. Raty, E. Schwegler, and S. A. Bonev, Nature �London� 449,

448 �2007�.
8 G. A. de Wijs, G. Kresse, and M. J. Gillan, Phys. Rev. B 57,

8223 �1998�.
9 S. Bernard and J. B. Maillet, Phys. Rev. B 66, 012103 �2002�.

10 F. Cricchio, A. B. Belonoshko, L. Burakovsky, D. L. Preston,
and R. Ahuja, Phys. Rev. B 73, 140103�R� �2006�.

11 D. Alfè, M. J. Gillan, and G. D. Price, Nature �London� 401, 462
�1999�.

12 A. Laio, S. Bernard, G. L. Chiarotti, S. Scandolo, and E. Tosatti,
Science 287, 1027 �2000�.

13 A. B. Belonoshko, E. I. Isaev, N. V. Skorodumova, and B. Jo-
hansson, Phys. Rev. B 74, 214102 �2006�.

14 A. B. Belonoshko, S. I. Simak, A. E. Kochetov, B. Johansson, L.
Burakovsky, and D. L. Preston, Phys. Rev. Lett. 92, 195701
�2004�.

15 C. Cazorla, M. J. Gillan, S. Taioli, and D. Alfè, J. Chem. Phys.
126, 194502 �2007�.

16 L. Vočadlo, D. Alfè, G. D. Price, and M. J. Gillan, J. Chem.
Phys. 120, 2872 �2004�.

17 S. Taioli, C. Cazorla, M. J. Gillan, and D. Alfè, Phys. Rev. B 75,
214103 �2007�.

18 J. J. Katz, G. T. Seaborg, and L. R. Morss, in The Chemistry of
the Actinide Elements, 2nd ed., edited by J. J. Katz, L. R. Morss,
and G. T. Seaborg �Chapman and Hall, New York, 1986�, pp.
1121–1195.

19 M. S. S. Brooks, B. Johansson, and H. L. Skriver, Handbook on
the Physics and Chemistry of the Actinides �Ref. 1�, Vol. 1,
Chap. 3, pp. 227–269.

20 P. Söderlind, Adv. Phys. 47, 959 �1998�.
21 H. G. Smith, N. Wakabayashi, W. P. Crummett, R. M. Nicklow,

G. H. Lander, and E. S. Fisher, Phys. Rev. Lett. 44, 1612
�1980�.

22 G. H. Lander, E. S. Fisher, and S. D. Bader, Adv. Phys. 43, 1
�1994�.

23 E. J. Nelson, P. G. Allen, K. J. M. Blobaum, M. A. Wall, and C.
H. Booth, Phys. Rev. B 71, 184113 �2005�.

24 R. Pynn, W. Press, S. M. Shapiro, and S. A. Werner, Phys. Rev.
B 13, 295 �1976�.

25 D. Gibbs, K. M. Mohanty, and J. Bohr, Phys. Rev. B 37, 562

�1988�.
26 L. Fast, O. Eriksson, B. Johansson, J. M. Wills, G. Straub, H.

Roeder, and L. Nordström, Phys. Rev. Lett. 81, 2978 �1998�.
27 N. Stojić, J. W. Davenport, M. Komelj, and J. Glimm, Phys. Rev.

B 68, 094407 �2003�.
28 A. Goldoni, A. Baraldi, G. Comelli, S. Lizzit, and G. Paolucci,

Phys. Rev. Lett. 82, 3156 �1999�.
29 Y. G. Hao, O. Eriksson, G. W. Fernando, and B. R. Cooper,

Phys. Rev. B 47, 6680 �1993�.
30 M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C.

Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev.
Lett. 96, 125501 �2006�.

31 G. M. Schmiedeshoff, D. Dulguerova, J. Quan, S. Touton, C. H.
Mielke, A. D. Christianson, A. H. Lacerda, E. Palm, S. T. Han-
nahs, T. Murphy, E. C. Gay, C. C. McPheeters, D. J. Thoma, W.
L. Hults, J. C. Cooley, A. M. Kelly, R. J. Hanrahan, and J. L.
Smith, Philos. Mag. 84, 2001 �2004�.

32 E. S. Fisher, J. Alloys Compd. 213-214, 254 �1994�.
33 J. Ganguly and G. C. Kennedy, J. Phys. Chem. Solids 34, 2272

�1973�.
34 J. Akella, G. S. Smith, R. Grover, Y. Yu, and S. Martin, High

Press. Res. 2, 295 �1990�.
35 C.-S. Yoo, J. Akella, and J. A. Moriarty, Phys. Rev. B 48, 15529

�1993�.
36 J. Akella, S. Weir, J. M. Wills, and P. Söderlind, J. Phys.: Con-

dens. Matter 9, L549 �1997�.
37 C.-S. Yoo, H. Cynn, and P. Söderlind, Phys. Rev. B 57, 10359

�1998�.
38 R. W. G. Wyckoff, Crystal Structures �Wiley, New York, 1963�,

p. 16.
39 J. Donohue, The Structure of the Elements �Wiley, New York,

1974�, Chap. 5.
40 A. C. Lawson, C. E. Olsen, J. W. Richardson, Jr., M. H. Mueller,

and G. H. Lander, Acta Crystallogr., Sect. B: Struct. Sci. 44, 89
�1988�.

41 D. A. Young, Phase Diagrams of the Elements �University of
California, Berkeley, 1991�, p. 222.

42 J. A. Moriarty, Phys. Rev. B 42, 1609 �1990�.
43 J. A. Moriarty, L. X. Benedict, J. N. Glosli, R. Q. Hood, D. A.

Orlikowski, M. V. Patel, P. Söderlind, F. H. Streitz, M. Tang, and
L. H. Yang, J. Mater. Res. 21, 563 �2006�.

44 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 �1992�; J. P.
Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
�1996�.

45 M. D. Jones, J. C. Boettger, R. C. Albers, and D. J. Singh, Phys.
Rev. B 61, 4644 �2000�.

46 P. Söderlind, O. Eriksson, B. Johansson, and J. M. Wills, Phys.
Rev. B 50, 7291 �1994�.

47 M. Pénicaud, J. Phys.: Condens. Matter 12, 5819 �2000�.
48 P. Söderlind, Phys. Rev. B 66, 085113 �2002�.

HOOD, YANG, AND MORIARTY PHYSICAL REVIEW B 78, 024116 �2008�

024116-8



49 P. Söderlind, A. Landa, B. Sadigh, L. Vitos, and A. Ruban, Phys.
Rev. B 70, 144103 �2004�.

50 C. J. Pickard, B. Winkler, R. K. Chen, M. C. Payne, M. H. Lee,
J. S. Lin, J. A. White, V. Milman, and D. Vanderbilt, Phys. Rev.
Lett. 85, 5122 �2000�.

51 N. Richard, S. Bernard, F. Jollet, and M. Torrent, Phys. Rev. B
66, 235112 �2002�.

52 M. Freyss, T. Petit, and J. P. Crocombette, J. Nucl. Mater. 347,
44 �2005�.

53 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.
54 L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

�1982�.
55 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�;

J. D. Pack and H. J. Monkhorst, ibid. 16, 1748 �1977�.
56 T. Le Bihan, S. Heathman, M. Idiri, G. H. Lander, J. M. Wills, A.

C. Lawson, and A. Lindbaum, Phys. Rev. B 67, 134102 �2003�.
57 F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 �1944�.
58 E. C. Bain, Trans. Am. Inst. Min., Metall. Pet. Eng. 70, 25

�1924�.
59 L. Verlet, Phys. Rev. 159, 98 �1967�.
60 R. W. Hockney and J. W. Eastwood, Computer Simulation Using

Particles �McGraw-Hill, New York, 1981�.

61 N. D. Mermin, Phys. Rev. 137, A1441 �1965�.
62 L. H. Yang, in Industrial Strength Parallel Computing, edited by

A. Koniges �Morgan Kaufmann, San Francisco, 2000�, p. 297.
63 M. Ross and L. H. Yang, Phys. Rev. B 64, 174102 �2001�.
64 L. H. Yang, R. Q. Hood, J. E. Pask, and J. E. Klepeis, J.

Comput.-Aided Mater. Des. 14, 337 �2007�.
65 M. Ross, L. H. Yang, and W.-C. Pilgrim, Phys. Rev. B 74,

212302 �2006�.
66 S. Nose, J. Chem. Phys. 81, 511 �1984�; S. Nose, Mol. Phys. 52,

255 �1984�; W. G. Hoover, Phys. Rev. A 31, 1695 �1985�.
67 American Institute of Physics Handbook, 3rd ed., edited by D.

Gray �McGraw-Hill, San Francisco, 1972�; Single Crystal Elas-
tic Constants and Calculated Aggregate Properties: A Hand-
book, 2nd ed. edited by G. Simmons and W. Wang �MIT, Cam-
bridge, 1971�.

68 M. Boivineau, L. Arlès, J. M. Vermeulen, and Th. Thévenin,
Physica B �Amsterdam� 190, 31 �1993�.

69 R. N. R. Mulford and R. I. Sheldon, J. Nucl. Mater. 154, 268
�1988�; R. I. Sheldon and R. N. R. Mulford, ibid. 185, 297
�1991�.

70 J. A. Moriarty, Phys. Rev. B 49, 12431 �1994�.

QUANTUM MOLECULAR DYNAMICS SIMULATIONS OF… PHYSICAL REVIEW B 78, 024116 �2008�

024116-9


